
Inorganica Chimica Acta, 119 (1986) 99-105 

Relativistically Parameterized Extended Hiickel Calculations. 
10. Lanthanide Trihalides 

LAWRENCE L. LOHR* and Y. Q. JIA** 

Department of Chemistry, University of Michigan, Ann Arbor, Mich. 48109, U.S.A. 

(Received February 25, 1986; revised May 26, 1986) 

99 

Abstract 

The REX relativistically parameterized extended 
Htickel method is used to study the electronic struc- 
ture of lanthanide trihalide molecules. All valence 
orbitals are described in terms of double-zeta Slater 
functions, with the atomic orbital parameters being 
determined by a least-squares fitting to published 
relativistic (Dirac- Fock) radial densities. Com- 
parisons of orbital energies to experimental values 
are made and various trends are discussed. Ab initio 

all-electron calculations at the self-consistent field 
level and as a function of molecular geometry are 
reported for LaHs, LaFs, and I..aCla. While LaHs 
and I..aF, are calculated to be pyramidal, LaCla is 
calculated to be planar. 

1. Introduction 

The gaseous lanthanide trihalides have been the 
subject of numerous experimental and theoretical 
investigations. The experimental investigations have 
included electric-field deflection [l] , electron dif- 
fraction [2], and photoelectron spectroscopy (PES) 
[3-51, with related PES studies [6-S] having been 
carried out for the solid trifluorides. The theoretical 
investigations have included calculations at the ex- 
tended Hiickel (EH) [9-lo], INDO [Ill, multi- 
ple-scattering Xa(MS-Xo) [ 12, 131 and relativistic 
discrete variational Xo(DVM) [5] levels. We earlier 
published [ 141 relativistic extended Hiickel results 
(REX) for LaIs, GdIa and LuIa with the focus being 
upon the equilibrium geometry of these molecules. 
The best of the theoretical studies is the relativistic 
DVM study [5] based on assumed structures (mostly 
planar). In order to explore further not only the 
structural question but also the spin-orbit split- 
tings of the occupied valence and core levels, we 
present here some further REX results augmented 
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by selected non-relativistic all-electron ab initio 
results. The REX method [U--16] has been used 
in describing [ 18-251 various properties, including 
nuclear spin-spin couplings, of heavy-element com- 
pounds. 

II. Double-zeta Atomic Functions 

Slater-type radial wave functions are widely used 
in semi-empirical quantum chemical calculations, 
with double-zeta functions generally providing more 
satisfactory results than single-zeta functions. Earlier 
papers in this series [17, 22-231 have reported 
double-zeta parameters for halogens and actinides. 
These parameters were typically obtained by a fit- 
ting of the radial density to that calculated by 
Desclaux [26] using numerical Hartree-Fock (HF) 
or Direc-Fock (DF) procedures. Single-zeta expo- 
nents for the lanthanides have been obtained from 
atomic self-consistent field (SCF) calculations by 
Clementi er al. [27] and from fits to HF or DF radial 
expectation values by Li et al. [l l] and by us [15, 
161. Double-zeta parameters for transition metals 
have recently been reported by Fitzpatrick and Mur- 

phy WI. 
In our present study we have obtained double- 

zeta parameters for the 6s, 5~i,~, 5~a,~, 5d,,,, 5dslz, 

4f,,z > and 4f,,, shells of the elements La through 
Lu. Again these have been based on Desclaux’ 
numerical DF atomic wave functions, but rather 
than a fitting to the radial density, a least-squares 
fitting to DF radial expectation values was employ- 
ed. We have also obtained by this procedure a new set 
of double-zeta parameters for the ns, npip, and t~p3,2 

shells of the halogens F (n = 2) through I (n = 5). Our 
earlier experience was that such a procedure occa- 
sionally produced unstable fittings, but our present 
procedure is more satisfactory. A double-zeta func- 
tion of given principal quantum number contains 
two exponents and two linear coefficients. In the 
first stage of our fittings, we take these as four inde- 
pendent parameters to be adjusted by a least-squares 
procedure to fit the set of four DF radial expecta- 
tion values Crk), k = 2, 1, 0 and -1. Thus the norma- 
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TABLE I. Double-zeta Parameters and Energy Parameters for Selected Lanthanidesa’b’c 

L. L. Lohr and Y. Q. Jia 

Atom Atomic 

orbital 
Cl Cl c2 r2 -E (eV) 

La 6s 0.554609 1.953578 0.589752 1.042466 4.89 

5P 0.476821 5.014282 0.682853 2.370811 27.78 

5P* 0.522058 4.933225 0.631565 2.402945 30.51 

5d 0.572423 2.922350 0.600120 1.357840 6.35 

5d* 0.596215 2.901245 0.575124 1.352633 6.48 

(4D 0.473645 8.700132 0.733310 3.215338 9.42 

Nd 6s 0.535387 1.969653 0.609236 1.043426 4.14 

5P 0.476821 5.014282 0.682859 2.370811 26.89 

5P* 0.562016 4.867585 0.583374 2.436657 30.14 

(5d) 0.767605 2.776867 0.377059 1.303870 (6.30,6.46) 

4f 0.458016 8.643562 0.745092 3.202980 12.67 

4f* 0.469666 8.599291 0.733399 3.214391 13.04 

Gd 6s 0.694744 1.973528 0.448731 1.027802 5.44 

5P 0.611170 4.795486 0.520638 2.486839 32.70 

5P* 0.673131 4.711819 0.436953 2.562657 37.34 

5d 0.721038 2.806742 0.461175 1.229689 5.91 

5d* 0.827562 2.734545 0.360506 1.069351 6.14 

4f 0.636189 8.031788 0.533169 3.45 1086 14.95 

4f* 0.645464 8.003089 0.520126 3.470138 15.71 

6s 0.817347 2.008402 0.323628 0.968808 6.00 

5P 0.719122 4.656918 0.371444 2.639202 36.95 

5P* 0.848037 4.518940 0.192191 2.848987 44.24 

5d 0.750661 2.786901 0.450971 1.141330 5.04 

5d* 0.800069 2.755971 0.396519 1.090771 5.21 

4f 0.779192 7.632421 0.313140 3.883810 16.02 

4f* 0.787354 7.581198 0.283276 3.871316 17.77 

aF~r I+ 0, nl denotes j = I+ %, while nl* denotes j = 1 ~ ‘/z. bThe notation (nl) denotes use of the same parameters for j = I+ 
% and i = 1 - %; where two values of -E are riven. the first is for nl, the second for nl*. ‘For all 15 elements La through Lu, 
see ‘Supplementary Material’. 

lization condition (r”) = 1 is implicitly rather than 
explicitly incorporated. The use of four parameters 
with four conditions implies that an exact fitting is 
possible. However, the final stages of convergence 
are slow, so that after a reasonably satisfactory fit 
has been found, typically after 5 to 10 cycles, the 
least-squares process is stopped and the linear coef- 
ficients are adjusted to give an exactly normalized 
function. These final adjustments are small, as the 
sum of the squares of the differences between the 
input and calculated values of the C?) is typically 
0.01 at this point, with distances in atomic units 
(a.u.) or Bohr. 

In Fig. 1 we compare the radial density calculat- 
ed from our double-zeta function for the 7s orbital 
of U to that calculated from Pyykko and 
Laaksonen’s (P-L) double-zeta function [23] and 
to that calculated from a single-zeta function fitted 
to the mean value of I ({(7s) = 1.728). We note that 
our double-zeta function is somewhat more contract- 
ed than the P-L function as compared to the single- 

6.0 80 ‘( 0 

Fig. 1. Comparison of radial densities p(r) = r2RZ(r) for 

U(7s) as obtained from our double-zeta function (----), the 

Pyykko-Laaksonen (ref. 23) double-zeta function (- - -), 
and a single-zeta function (. . . . .) with r = 1.728. Distance is 

in atomic units (a.“.) (Bohr). 

zeta function, but the difference does not appear 
significant for our semi-quantitative purposes. 

We list in Tables I and II the double-zeta coeffi- 
cients and exponents thereby obtained for the lantha- 
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TABLE II. Double zeta Parameters and Energy Parameter? for Halogens 

Atom Atomic 

orbital 
Cl i-1 c2 s‘z -E (eV) 

F 2s 0.642565 2.616176 0.357451 2.589120 34.89 

2P 0.525985 2.632205 0.487474 1.959236 13.83 

2p* 0 523319 2.642499 0.490315 1.963235 13.90 
Cl 3s 0.772504 2.524923 0.252063 1.698524 23.38 

3P 0.688138 2.222300 0.354653 1.379071 11.72 

3P* 0 683790 2.233997 0.358314 1 393848 11.86 
Br 4s 0.685466 3.156290 0.373837 1.925222 23 78 

4P 0.576701 3.089149 0.547709 1.532434 11 23 

4P* 0 635842 3.025343 0.487968 1.491662 11.79 
I 5s 0.542381 4.313218 0.619170 2.060634 20.86 

5P 0.435694 3.774910 0.723409 1.755239 9.58 

5P* 0.484959 3.7045 15 0.669183 1.785650 10.72 

aFor I= 1, np denotes j = 312, while np* denotes j = %. 

nides La, Nd, Gd, and Lu and for the halides. Also 
listed are the orbital energy parameters as used in our 
REX calculations. See also ‘Supplementary Material’. 
The energy parameters are basically Desclaux’ DF 
orbital energies [26], but have been shifted by the 
following amounts in eV: Ce(4f), t4; Pr(4f) through 
Eu(4f), -3; Gd(4Q t4.4; Tb(4f) through Yb(4f), 
-3; Lu(4Q t5.5; F(2s), t8; F(2p) and C1(3s), t6; 
C1(3p), +2; Br(4s), +4; Br(4p), i-1; I(Ss), +3; and 
1(5p), tl. In each case both j-levels for a given n and 
I were given the same shift. The basic direction of 
these shifts were chosen to raise the halogen levels 
and lower the Ln(4f) levels; the Ce, Gd, and Lu DF 
atomic eigenvalues were already very low (negative) 
and were raised, giving 4f values varying smoothly 
(Fig. 2) with atomic number 2. The La(4f) value 

1(5p) 

9 
5 
w 

F(2p) 

-16 Ln(4f,,J 

Ln(4f,,,) 

-2J-JJJ-J 
57 61 65 69 

Fig. 2. Orbital energies in eV for Ln(4f) and X(np) levels. The 

width of the shaded band for each X(np) level denotes the 

separation betweeen X(nps1.2) and X(nplp). The energies are 

the neutral atom Dirac-Fock values of Desclaux (ref. 26), 

but shifted as described in the text. 

was obtained as -9.42 eV by extrapolation and 
used for both 4f,,, and 4f,,,. A key feature of these 
parameters is that the Ln(4f) levels lie at least 1 eV 
below the X(np) levels for Pr to Lu for X = I, Nd to 
Lu for X = Br or Cl, and Eu to Lu for X = F, so that 
in these cases the 4f levels may be considered to be 
core-like. Only for LaFa to NdF,, LaCla, LaBra, 
CeCla, and CeBra are the 4f levels appreciably above 
the X(np) levels. 

III. REX Orbital Energies for LnX3 

We have carried out REX calculations for all 60 
of the molecules LnXa, with Ln = La to Lu and X = 
F to Cl, assuming for the halides of La, Ce, Nd, Gd, 
Er, and Lu the same geometries (Table III) as used by 
RuSEiC ef al. [5] in their relativistic Xa studies. 
These geometries are planar @ah), except for La&, 
CeCla, LuCla, CeBrs, NdBrs, GdBra, and LuBr,, 
which are pyramidal (C’s”). The fluorides and iodides 
of the remaining lanthanides were assumed to be 
planar, while the chlorides and bromides were assum- 
ed to be pyramidal. We seriously doubt the correct- 
ness of many of these structural assignments, but 

TABLE III LnXs Geometrie? used in REX Calculations 

La Nd Cd Lu 

F 2.22 2.15 2.10 2.02 

120 120 120 120 

Cl 2.587 2.545 2.489 2.41? 

112.5 120 120 111.5 

Br 2.741 2.689 2.640 2.56 

120 111 113.8 114 

I 2.946 2.894 2.845 2.766 

120 120 120 120 

aBond lengths in A and bond angles in degrees from ref. 5. 
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Fig. 3. REX orbital energies in eV for LaX3 using parameters 
from Tables I and II and geometries from Table III (ref. 5). 
The levels are labeled by the atomic orbital (AO) which is the 
principal component of each MO. Only the highest and 
lowest energy are shown for each group of levels. Circled 
points are experimental PES values (refs. 3-S). The notation 
nl* and nl for Ln denote j = 1 - l/z and j = I+ %, respectively. 

I I I I 

Fig. 4. As in Fig. 3, but for NdX3. The open (o) and closed 
(0) circled points denote experimental PES values (refs. 3-5) 
assigned to X(np) and Ln(4f) levels, respectively. 

they do facilitate comparisons between the REX and 
XCY results. In Figs. 3-6 we present the results for the 
halides of La, Nd, Gd, and Lu; experimental PES 
[3-51 data are also shown as available. 

We show the REX orbital energies for the X(np), 
X(ns), Ln(Sp), and Ln(4f) (if occupied) levels. For 
X(np) and X(ns) we show only the highest and lowest 
energy levels of each group of levels, thus defining 
a ‘band width’. For Ln(5p) we show the pip 
(denoted p*) and the crystal-field split ~312 (denoted 
p) levels. For Ln(4f) we show the f5/2 (denoted f*) 
and f,p levels (denoted f), but typically do not show 
the very small crystal-field splittings of each of these 
j levels. Several features are common to all of the 
LnXs results. The X(np) levels rise in energy (a reflec- 
tion of the input atomic energies) and increase in 

-40G--+-k+ 
Fig. 5. As in Fig. 4, but for GdX3. 

-40t ,_+_,L”51 
F Cl Br I 

Fig. 6. As in Fig. 4, but for LuX3. 

band width (a consequence of spin-orbit splitting 
and intramolecular interaction) for F to I. Specifi- 
cally, the width increases from approximately 1.2 
eV to 2.8 eV, matching well the observed increases 
for La, Gd, and Lu. At the single-zeta level the widths 
are smaller than at the double-zeta level, an example 
being 1.65 vs. 2.34 eV for Lu13. The X(ns) levels are 
narrow in width, typically 0.25 to 1 .O eV. An excep- 
tion is GdF3, as in our parameterization the F(2s) 
atomic level at -34.89 eV is nearly degenerate with 
the Gd(5pl,2) and (5ps/2) levels at -37.34 and 
-32.70 eV, respectively. As a consequence the pre- 
dominantly F(2s) band shows (Fig. 5) a width of 
approximately 2.0 eV. The I_J$5p3,2) level shows a 
crystal-field splitting that is small (0.25 to 0.75 eV) 
compared to the p3,2-p1/2 spin-orbit splitting of 
2.73 (La) to 7.29 eV (Lu) and that typically 
decreases in going from F to I and in going from La 
to Lu. The Ln(5py2) and (ps12) levels become 
increasingly core-like as 2 increases, with energy 
lowerings in our input parameters of 13.73 and 9.13 
eV, respectively, in going from La to Lu. 
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The Ln(4f7,2) and (fs,a) levels have from our 
parameterization a spin orbit separation that agrees 
well with that observed for GdXs and LuXa (Figs. 5 
and 6) The absolute position of these levels is largely 
determined by the assumed shifts of the atomic DF 
values as described at the end of ‘Section II’. An 
interesting experimental result that we cannot reprod- 
uce with the present non-iterative (no charge self- 
consistency) version of REX is the rise in the 4f 
levels of approximately 0.5 to 0.75 eV in going from 
Cl to Br or Br to I. As the 4f levels are core-like in 
their radial distribution even when their energy 
is high; this rise is best interpreted as a binding energy 
chemical shift Thus it reflects the change in the 
electrostatic potential at or near the Ln nucleus 
accompanying a change of X, and in no way indicates 
4f covalency. We can easily change the input 4f 
energies to fit the observed ionization energies for 
any given LnXa, but any particular choice does not 
fit for all X. We do note that our computed Mulliken 
charges on Ln decrease in going from F to I, an 
example being LuXa for which the charges are 2.82, 
2.37, 2.3 1, and 2.01 for X = F, Cl Br, and I, respec- 
tively These changes are in the direction which 
would produce rises in the 4f energies (decreases 
in the ionization energies) and reflect increased 
occupancy of the 6s and 5d levels of Lu. Specifically 
the Mulliken orbital charges for LuXa, X = F, Cl, Br, 
and I, are 0.029, 0.156, 0.168, and 0.245 for 6s 
0.070, 0.196, 0.220, and 0.326 for 5d,,*, and 0.090, 
0.284,0.307, and 0.424 for 5d,,, 
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IV. Ab Znitio Calculations for LaHa, LaFs, and LaCI, 

In order to explore further the question of the 
equilibrium geometry of LnXa molecules we carried 
out geometry optimizations for LaH3, LaFa., and 
LaCla using analytical energy gradients and the ab 
initio GAUSSIAN 82 program [29] . The calculations 
were made at the single-determinantal (self-consis- 
tent field or SCF) level and employed for La a 
minimal (3G) basis set published by Huzinaga [30] 
for the shells 1s to 6s 2p to 5p and 3d to 4d. We 
augmented this set with single Gaussian basis func- 
tions for the 5d and 6p shells, with exponents of 
0.2725 and 0.05, respectively. As the 5d function 
is expected to be particularly important in describ- 
ing La compounds its exponent was chosen by mini 
mization of the energy of LaF, (&) with La--F = 
2.20 8, The exponent for the less important 6p func- 
tion was simply selected to be approximately one- 
half of the smallest p-exponent in the minimal basis 
set For each of the three d-shells only the set of five 
true d functions were employed. For H we employed 
the split-valence 31G basis commonly used with 
6-3 1G basis sets [31] for main-group elements, while 
for F and Cl we employed the minimal 3G basis sets 

TABLE IV. Ab Initio Equilibrium Geometries and Relative 

Energies 

Molecule Symmetry MX= XMXb AE’ 

LaH3 C3Vd 2.129 114.7 0 
Dm 2.137 120.0 239 

LaF3 GVd 2.080 112.0 0 

@.h 2.089 120.0 921 

LaC13 &h 2.623 120.0 0 

C3,” 2.613 112.0 381f 

aBond length M-X in A. bBond angle X-M-X in deg. 

‘E(Dx) - E(C3,) in cm-’ except for LaC13. dUnstable 

with respect to out-of-plane deformation. eNon-equilib- 

rium structure with bond angle assumed to be the same as 

that computed for LaF3. fW3v) - .@D3h). 

of Huzinaga. Optimizations were carried out with 
D3h and with C3, symmetry constraints. 

We find (Table IV) the pyramidal C3v structure 
found to be favored for LaH3 and I_aF3, although 
by only 239 cm-’ for LaH3. By contrast we find 
the planar D3h form of I&l3 to be stable with res- 
pect to the out-of-plane deformation. The com- 
puted La-H bond length is approximately 0.05 A 
longer than the La-F length, a result consistent 
with a mostly ionic description of the bonding. 
Interestingly our computed distances of 2.129 and 
2.080 A for LaH3 and LaFa, respectively, are similar 
to the observed 1321 distances of 2.110 and 2.097 
A for the rrr states of the corresponding diatomics 
LaH and I_aF. The gaseous Cs diatomics show an even 
greater difference between bond lengths to H and to 
F, namely observed [32] distances of 2.4938 and 
2.3454 A for CsH and CsF, respectively. The Mulli- 
ken charges on La are similar for all three molecules, 
namely +1.62 and t1.66 for the C,, forms of LaH3 
and LaF,, respctively, and t1.75 for the D3h form 
of LaC13. We also note that the calculated La-F 
and La-Cl bond lengths are considerably shorter 
than the distances observed [33, 341 in the crystal- 
line trihalides; 2.08 vs. 2.36 A for I_aF3 and 2.62 
vs. 2.95 A for LaCl,. Although our computed 
distances may be too short, we do believe the 
trend to be correct. For example, observed dis- 
tances for CsF are 2.3454 and 3.005 8, in the 
molecule [32] and in the solid [33], respectively, 
with the corresponding distances for other alkali 
halides also showing a significant contraction 
in going from the solid to the molecule. AS our 
ab initio results are based on the use of small 
basis sets and do not incorporate either correla- 
tion or zero-point energy corrections, we attach 
to them only semi-quantitative significance. They 
do offer some support to the expectation of a non- 
-planar equilibrium geomtry for at least some of the 
LnX3 molecules. 
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Fig. 7. Orbital energies for LaFs at various levels. SCF denotes ab inifio values obtained using an augmented STO-3G basis for 

optimized structures obtained for assumed (a) Dsn a nd (b) Cs, structures. REX denotes relativistically parameterized extended 

Htickel values at the SCF (a) D3h and (b) Cs, geometries. XCI and RXol denote the non-relativisitic and relativistic XCY calcula- 

tions or Weber el a2. (ref. 12) and of RuEid el al. (ref. 5), respectively. The experimental (EXP) values are from (a) Weber et al. 
and (b) Wertheim et al. (ref. 6), both sets being for the solid state. With the exception of the REX La(Sp) levels only band widths 

rather than individual levels are shown. 

The experimental situation with respect to the 
structural question is not conclusive. From electric- 
field deflection studies [l] , Kaiser et al. concluded 
that the fluorides of La, Gd, and Lu were polar and 
therefore pyramidal, those of Tm, Ce, and Er were 
probably polar, and those of Nd, Pr, Tb, Dy, and Ho 
were non-polar and therefore planar; no conclusions 
could be drawn about the fluorides of Sm, Eu, and 
Yb. Electron diffraction data have suggested [2] 
pyramidal structures for the iodides of Pr, Nd, Gd, 
and Lu. 

In Fig. 7 we summarize our findings for the orbital 
energies of IaFa. Shown are the SCF ab initio and 
REX values, with both being for the (a) D3,, and 
(b) Ca, SCF geometries given in Table IV. We note 
that both the SCF and REX values are rather insensi- 
tive to the geometry change as compared to the rela- 
tively large energy separations between the energy 
‘bands’. Also shown are the non-relativistic and relati- 
vistic Xo values of Weber et al. [12] and RuSlSiC 
et al [S] , respectively. The experimental values 
shown are from the solid-state data of Weber et al. 
[12] and Wertheim et al. [6]. Overall there is general 
agreement among the various computational levels 
and between computation and experiment. The 
SCF La(5s) and (5~) energies are too low, probably 
reflecting an excessively ionic description arising in 
part from the SCF approximation and in part from 
basis set inadequacies. The fine-structure obtained 

at the REX level for the I_a(Sp) levels is shown in 
detail; the overall band width matches the observed 
width better than does the relativistic Xcr width, 
although the absolute REX energies are approx- 
imately 4 eV too low. 

V. Conclusion 

We have obtained a set of double-zeta Slater- 
type atomic functions for lanthanide orbitals 
and used these in REX calculations to study the 
electronic structure of the lanthanide halide 
molecules. Comparisons of calculated orbital 
energies to observed ionization energies indi- 
cate that the REX method gives a good descrip- 
tion of the levels which are mostly ligand X(np) 
in composition. Spin-orbit and crystal-field split- 
tings of the Ln (5~) and (4f) levels are discussed. 
The question of planar YS. non-planar geometries 
for the LnXa molecules is approached with the aid of 
ab initio calculations at the SCF level. Although 
LaHa and LaF, are calculated to be non-planar, 
the inversion barriers for LaHa and LaF3 (239 and 
921 cm-‘, respectively) are small, as is the energy 
required (approximately 380 cm-‘) to distort 
planar I&la to the same bond angle as computed 
for I_aFa (112’). 
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Supplementary Material 

A table of parameters for all 15 elements La 
through Lu may be obtained from the authors on 
request. 
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